Contribution of resistance-nodulation-division efflux pump operon smeU1-V-W-U2-X to multidrug resistance of Stenotrophomonas maltophilia.

نویسندگان

  • Chao-Hsien Chen
  • Chiang-Ching Huang
  • Tsao-Chuen Chung
  • Rouh-Mei Hu
  • Yi-Wei Huang
  • Tsuey-Ching Yang
چکیده

KJ09C, a multidrug-resistant mutant of Stenotrophomonas maltophilia KJ, was generated by in vitro selection with chloramphenicol. The multidrug-resistant phenotype of KJ09C was attributed to overexpression of a resistance nodulation division (RND)-type efflux system encoded by an operon consisting of five genes: smeU1, smeV, smeW, smeU2, and smeX. Proteins encoded by smeV, smeW, and smeX were similar to the membrane fusion protein, RND transporter, and outer membrane protein, respectively, of known RND-type systems. The proteins encoded by smeU1 and smeU2 were found to belong to the family of short-chain dehydrogenases/reductases. Mutant KJ09C exhibited increased resistance to chloramphenicol, quinolones, and tetracyclines and susceptibility to aminoglycosides; susceptibility to β-lactams and erythromycin was not affected. The expression of the smeU1-V-W-U2-X operon was regulated by the divergently transcribed LysR-type regulator gene smeRv. Overexpression of the SmeVWX pump contributed to the acquired resistance to chloramphenicol, quinolones, and tetracyclines. Inactivation of smeV and smeW completely abolished the activity of the SmeVWX pump, whereas inactivation of smeX alone decreased the activity of the SmeVWX pump. The enhanced aminoglycoside susceptibility observed in KJ09C resulted from SmeX overexpression.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative Genomics of Environmental and Clinical Stenotrophomonas maltophilia Strains with Different Antibiotic Resistance Profiles

Stenotrophomonas maltophilia, a ubiquitous Gram-negative γ-proteobacterium, has emerged as an important opportunistic pathogen responsible for nosocomial infections. A major characteristic of clinical isolates is their high intrinsic or acquired antibiotic resistance level. The aim of this study was to decipher the genetic determinism of antibiotic resistance among strains from different origin...

متن کامل

The SmeYZ efflux pump of Stenotrophomonas maltophilia contributes to drug resistance, virulence-related characteristics, and virulence in mice.

The resistance-nodulation-division (RND)-type efflux pump is one of the causes of the multidrug resistance of Stenotrophomonas maltophilia. The roles of the RND-type efflux pump in physiological functions and virulence, in addition to antibiotic extrusion, have attracted much attention. In this study, the contributions of the constitutively expressed SmeYZ efflux pump to drug resistance, virule...

متن کامل

A Linkage between SmeIJK Efflux Pump, Cell Envelope Integrity, and σE-Mediated Envelope Stress Response in Stenotrophomonas maltophilia

Resistance nodulation division (RND) efflux pumps, such as the SmeIJK pump of Stenotrophomonas maltophilia, are known to contribute to the multidrug resistance in Gram-negative bacteria. However, some RND pumps are constitutively expressed even though no antimicrobial stresses occur, implying that there should be some physical implications for these RND pumps. In this study, the role of SmeIJK ...

متن کامل

Role of the pcm-tolCsm operon in the multidrug resistance of Stenotrophomonas maltophilia.

OBJECTIVES To elucidate the role of the pcm-tolCsm operon in the multidrug resistance of Stenotrophomonas maltophilia. METHODS The presence of the pcm-tolCsm operon was verified by RT-PCR. The phylogenetic relationship between the outer membrane proteins known to be involved in functional tripartite efflux in Escherichia coli, Pseudomonas aeruginosa and S. maltophilia was analysed. The contri...

متن کامل

Multidrug efflux pumps and antimicrobial resistance in Pseudomonas aeruginosa and related organisms.

Pseudomonas aeruginosa is an opportunistic human pathogen characterized by an innate resistance to multiple antimicrobial agents. A major contribution to this intrinsic multidrug resistance is provided by a number of broadly-specific multidrug efflux systems, including MexAB-OprM and MexXY-OprM. In addition, these and two additional tripartite efflux systems, MexCD-OprJ and MexEF-OprN, promote ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Antimicrobial agents and chemotherapy

دوره 55 12  شماره 

صفحات  -

تاریخ انتشار 2011